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If one replaces the ordinary kinetic energy function for a classical system of point 
masses (3 XL, mi4r) by a more general quadratic form (4 &, i&f&,), where MS, 
is an arbitrary positive-definite symmetric “mass tensor,” one obtains a system having 
different dynamics but the same equilibrium properties as the original system. By 
appropriate choice of Mij , high frequency motions can be slowed down and low fre- 
quency ones speeded up, thereby increasing the efficiency with which configuration space 
can be explored in a given amont of computer time. Tests of the method on a short 
Lennard-Jones polymer chain indicate that a five- to tenfold saving of computer time is 
possible for such systems. 

I. INTRODUCTION 

The molecular dynamics method is typically applied to a system of mass points 
(“atoms”) describable by a classical Hamiltonian 

H = S f midi + U(q, ... qiv), (1) 
i=l 

where qi is the ith Cartesian coordinate, mi its mass, and U the potential energy. 
The equilibrium properties of such a system (as opposed to its transport or 
relaxation properties) are independent of the kinetic part of the Hamiltonian, and 
could just as well be studied in a system whose kinetic energy was a more general 
quadratic function of the velocities, e.g., 

or, in a more compact notation, 

H’ = #Mq + U(q) (3) 

* Work begun at the Centre Europeen de Calcul Atomique et Moleculaire, Universitt de Paris 
Bgtiment 506,91 Orsay France and continued at IBM Research Center. 
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where M, the “mass tensor,” . IS an arbitrary positive-definite N by N symmetric 
matrix. Newton’s equations of motion for the new system are then 

4 = -M-lVU(q). (4) 

The goal of doing dynamics on such an artificial system would be, by judicious 
choice of the mass tensor, to slow down the original system’s high frequency 
motions and speed up its low frequency motions, thereby making possible a more 
efficient sampling of the system’s configuration space in a given amount of computer 
time. For the mass tensor method to be worthwhile, the gain in sampling efficiency 
must more than offset the extra computational work involved in computing the 
accelerations from the forces by Eq. (4). Typically this requires about as much time 
as the force calculation, which also must be done once per time step. 

Information on the local shape of the potential energy surface in configuration 
space, and hence on the local oscillation frequencies, can be obtained from the 
instantaneous matrix of force constants: 

A,,(q) g FU(q)/(+i aqj). 

If the system is nearly harmonic (e.g., a low temperature crystal or glass) the A 
matrix will be approximately constant throughout the accessible portion of 
configuration space, and the oscillation frequencies can all be made approximately 
equal by taking 

M = A * const, (6) 

where the A matrix has been evaluated at a fixed but arbitrary configuration not 
too far from the configuration of minimum energy. The normalization constant 
is arbitrary, but may conveniently be taken to be I A /-liiv. When Eq. (6) is used 
to define the mass tensor, mass tensor dynamics becomes analogous to quadra- 
tically convergent methods of function minimization [I, 21. These, by taking 
advantage of local curvature information, avoid the excessive oscillation charac- 
teristic of steepest-descent methods. Of course the goal of function minimization 
(to find the local minimum quickly) is different from that of dynamics (to explore 
the low-energy part of the potential surface quickly, but in a statistically represen- 
tative manner). 

Unfortunately, in the strongly anharmonic systems in which one is typically 
interested (e.g., liquids; polymers capable of undergoing conformational 
rearrangement), the A matrix is neither approximately constant nor positive definite 
[3], and there is no obvious “best” choice for the mass tensor. The approach that 
will be used in the present study is to define the mass tensor as a matrix having the 
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same eigenvectors as a typical instantaneous or time-averaged A matrix, but 
a different set of eigenvalues, all positive; i.e., 

with hk being the eigenvalues and V the orthogonal matrix of column eigenvectors 
of A. The functionf, which must always be positive, is empirically chosen so as to 
roughly equalize the system’s local oscillation frequencies, some of which are 
rather ill-defined. 

Before attempting to apply the mass tensor method, an exploratory study was 
made of the relation between the eigenvalue spectrum of A and the local shape 
of the potential energy surface in two typical anharmonic systems: 

(1) a free droplet of 24 atoms interacting via the Lennard-Jones pair 
potential, 

u(r) = 4e[(a/r)12 - (u/r)“]; (8) 

(2) a lo-atom flexible polymer chain with harmonic forces between bonded 
atoms (bond length = 0.7071a, force constant = 300OO~/a~) and Lennard-Jones 
forces between all other, nonbonded pairs of atoms. The ratio of bonded to 
nonbonded forces in this system is of the same order of magnitude as that found 
in organic polymers. 

The next section describes the results of the eigenvalue study, while the Sec- 
tion III describes the application of mass tensor dynamics to the polymer chain 
system. Section IV discusses the dynamics of systems in which the mass tensor is 
not constant. 

II. EIGENVALUES OF THE A MATRIX AND THE SHAPE OF THE 
POTENTIAL ENERGY SURFACE 

Figure 1 shows the distribution of eigenvalues of the A matrix observed in two 
configurations of the 24-atom droplet, one occurring during a run corresponding 
to argon at 20 K (upper histogram); the other during a run at 35 K (lower histo- 
gram). The three zero-frequency eigenvalues corresponding to pure translations 
are omitted from the histograms (because the droplet is vibrationally excited, 
the three rotational degrees of freedom mix with the vibrational degrees of freedom 
and do not give rise to any further zero eigenvalues). The most noteworthy features 
of the spectra are the presence of negative eigenvalues (characteristic of anharmon- 
icity) which become much more numerous as the temperature is increased, and 
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FIG. 1. Eigenvalue spectra of the instantaneous force constant matrix for a 24-atom Lennard- 
Jones droplet at two temperatures: top curve-conditions comparable to argon at 20 K (E = 
--84.6c, kT/c = 0.16); bottom curve-conditions comparable to argon at 35 K (E = -70.2~, 
kT/e = 0.29). 

the overall width of the spectrum, with most positive eigenvalues falling between 
10 and 300. This 30-fold spread of eigenvalues implies only a (30)1/2-fold spread 
of normal mode frequencies; hence the droplet is unlikely to show much improve- 
ment on going from normal to mass tensor dynamics. For this reason the remaining 
tests were conducted on the flexible polymer chain, which has a much broader 
eigenvalue spectrum (cf. Fig. 2). 

The polymer chain was started in a helical configuration at a temperature 
kT/c = 0.83, corresponding to 100 K, and allowed to move according to the 
two-body forces already described. In order to destroy the system’s translational 
and rotational symmetry, one-body harmonic restoring forces (force constant 
3000040~) were applied to the x, y, and z coordinates of atom 1, the x and y 
coordinates of atom 2, and the x coordinate of atom 3. The A matrix therefore 
had no zero eigenvalues. The upper histogram in Fig. 2 is the average of ten 
instantaneous eigenvalue spectra taken at different times during a run. The distribu- 
tion of positive eigenvalues varied very little from one configuration to the next, 
but the number of negative eigenvalues varied from two to seven. The variability 
of the negative eigenvalues, as well as the suprisingly high absolute values of some 
of them, suggests that they represent rather localized convex wrinkles on a generally 
concave potential energy surface. This hypothesis is confirmed by the fact that 
if the various second derivatives of U are averaged over a few hundred steps of 
ordinary dynamics, rather than being computed for a single configuration, the 
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FIG. 2. Eigenvalue spectra of the lO-atom flexible polymer chain under conditions com- 
parable to argon at 100 K (E = -2.5, kT/c = 0.83). Upper curve-instantaneous eigenvalue 
spectrum; lower curve-eigenvalue spectrum of a force constant matrix averaged over 269 steps 
of normal dynamics (elapsed time 0.55 (rn~~/~)~l*). 

resulting time-averaged A matrix, A, has no negative eigenvalues (lower curve 
in Fig. 2). 

In order to better understand the relation between the eigenvalue spectrum and 
the shape of the potential surface, a typical polymer configuration was selected, 
its instantaneous A matrix was evaluated and diagonalized, and the normal 
coordinates Q, , Q, ,..., QN were defined as 

where Vij is the orthogonal matrix of column eigenvectors of A. For each Q, , 
a cross section of the potential surface in the Q, direction was prepared by observing 
the variation of the potential energy as that normal coordinate was varied while 
all others were kept fixed. Four such cross sections are shown in Fig. 3; in each 
case the point LIQ = 0 corresponds to the reference configuration at which A was 
evaluated, and with respect to which energy differences d U are measured. 

581/19/3-3 
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FIG. 3. Cross sections of the potential energy surface along principal axes of the force constan 
matrix, for a typical instantaneous configuration of the N-atom polymer chain. Four cross 
sections are shown, corresponding to the eigenvalues X, = 44000, X,, = 660, hP8 = 1.7, and 
Agp = -122, all in units of ejo2. 

The cross sections corresponding to the larger positive eigenvalues, e.g., 
h, = 44000 and h,, = 660, were approximately parabolic, with width proportional 
to l/(h)l12. The cross sections corresponding to the smaller positive and the 
negative eigenvalues (e.g., h,. = 1.7 and h,, = -122) were flat- or convex- 
bottomed, steep-sided valleys ranging in width between 0.30 and 0.7a, i.e., no 
wider than a harmonic valley of curvature 10. For this reason the dynamical tests 
described in the next section were conducted with theffunction 

f(h) = max(l0, A}. (10) 

Also, because of the apparent transience of the negative eigenvalues, the eigen- 
values h, and eigenvectors Vii were obtained from a time-averaged, rather than 
an instaneous, A matrix. Since time-averaging obliterates the negative eigenvalues, 
the only effect of the f function was to harden the few lowest positive eigenvalues 
relative to the others. A rather similar result could have been achieved without 
diagonalizing the averaged A matrix at all, merely by adding 10 to all its diagonal 
elements, 

Mjj = (A, + 10&J * const. (11) 

Although this would have increased all the eigenvalues by 10, the effect on the 
oscillation frequencies corresponding to the larger positive eigenvalues would 
have been negligible. 
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III. TRIALS OF MASS TENSOR DYNAMICS 

Given a potential energy function U(q) and a mass tensor M, Newton’s equations 
of motion (Eq. (4)) can be solved in several ways: 

(1) The positions, velocities, and accelerations can all be expressed, and 
Eq. (4) integrated, in normal coordinates Qi , Qi, oi , with respect to which M 
is diagonal (cf. Eq. (9)). 

(2) The inverse of M can be calculated and used to integrate Eq. (4) directly 
in atomic coordinates, the forces being multiplied by M-l to obtain the accelera- 
tions f& . 

(3) M can be factored into the form M = PLDLTPT where P is a permuta- 
tion, D a diagonal, and L a lower triangular matrix with ones on the diagonal. 
Newton’s equation 

PLDLTPTi = - VU(q) 

is then back-solved for the atomic accelerations ;i at each time step. 

(12) 

Method 1 is relatively wasteful of computer time because it requires diagonalizing 
the mass tensor initially, and, at each time step, transforming back and forth 
between atomic and normal coordinates, since the function VU can only be 
computed in the atomic basis. Nevertheless this method was used in the numerical 
work to be described below, because the machinery for generating and using the 
transformation matrix V was already available as a result of the energy surface 
cross section studies. Method 2 is the most straightforward, does not require a 
diagonalized mass tensor (thus allowing the mass tensor to be defined in terms 
of a nondiagonalized force constant matrix, as suggested by Eq. (1 l)), and requires 
only one matrix-vector multiplication per time step, as opposed to two for 
method 1. However, for systems with a large number of degrees of freedom, 
method 3 is probably the best because, while retaining the advantages of method 2, 
it allows sparse matrix techniques [4, 5]l to be used to advantage. When the 
dimensions of the system being studied are large compared to the range of inter- 
atomic forces, most elements of the force constant matrix, and hence of the mass 
tensor, will be zero. In general, all this sparsity will be lost in the inverse mass 
tensor M-l, used in method 2; however, much of it can be retained in the triangular 
matrix L of method 3, by appropriate choice of the permutation P [6].2 Preservation 

1 See in particular the summary paper by F. G. Gustavson in [5]. 
2 This paper discusses regular arrays of objects (e.g., atoms), with short-range interactions; 

however, its results can presumably be generalized to dense, irregular arrays. When the size of a 
three-dimensional array is large compared to the range of interaction, the number of nonzero 
elements in the L matrix can be made to increase as the 413 power of N, by an appropriate permuta- 
tion strategy (cf. p. 358). 
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of sparsity is important because the time required to compute the accelerations 
from the forces at each time step is proportional the number of nonzero elements 
in M-l (for method 2) or in L (for method 3). 

The comparison of ordinary and mass tensor dynamics was carried out on the 
ten-atom polymer chain described in the last paragraph of Section I and the 
second paragraph of Section II. For both ordinary and mass tensor dynamics the 
equations of motion (including the symmetry-destroying one-body forces) were 
integrated by a five-derivative Gear algorithm [7, 8],3 the algorithm being applied 
to the atomic coordinates and their time derivatives for the ordinary runs and to 
the normal coordinates and their time derivatives for the mass tensor runs. The 
time step dt was automatically adjusted to hold the total energy within kO.5~ 
of its nominal value for about ten time steps. Whenever the energy drifted out of 
bounds, the system was restarted from its previous configuration with a new 
Maxwellian set of velocities, scaled so as to restore the energy to its nominal 
value of -2.56 (the mean energy, -2.36, consisted of 12.2~ kinetic and -14.5~ 
potential energy). 

To define the mass tensor, the force constants were averaged over an ordinary 
dynamics run of 269 steps. The resulting matrix a was then diagonalized to 
obtain its eigenvalues h, (cf. lower histogram in Fig. 2) and eigenvectors Vi/ii , 
and the mass tensor was defined by Eq. (7) using theffunction of Eq. (10) (this 
merely had the effect of increasing to +lO the A matrix’s two softest eigenvalues, 
namely, +I.7 and +5.4). The run was then continued for about 6000 steps of 
mass tensor dynamics, using the mass tensor calculated in the first 269 steps. 
A 3000-step ordinary dynamics run from the same starting configuration was 
made for comparison. 

Assessment of the relative efficiency of ordinary and mass tensor dynamics in 
exploring configuration space is a somewhat subtle problem. The maximum time 
step dr tolerated by the integration algorithm is not a good criterion, because the 
definition of the mass tensor (cf. Eq. (6)) introduces an arbitrary normalization 
factor in the time. In the present work, where the normalization convention of 
Eq. (7) was used, some modes were speeded up and others slowed down, but the 
maximum time step for mass tensor dynamics remained about the same as for 
ordinary dynamics, about 0.002 (rn~?/z)l/~. Two better measures of efficient 
dynamics are: (1) the squared end-to-end distance, (r10 - r1)2, as a function of 
elapsed number of time steps; and (2) the mean squared displacement in configura- 
tion space in n time steps, 

a The following timing information (for the IBM 360-91 computer, Fortran H optimizing 
compiler) may be of interest. One time step of ordinary dynamics = 1.4 msec (mostly in force 
calculation); one time step of mass tensor dynamics = 3.0 msec; diagonalization of force constant 
matrix (double precision) = 1000 msec. 
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(13) 

as a function of n. In order for S,, to be a reliable measure of conformational 
change, the system must be prevented from undergoing rotational or translational 
drift. This was the principal purpose for the one-body forces on the first three 
atoms of the chain. 

As Fig. 4 shows, the end-to-end distance fluctuates about as much in 100 steps 
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FIG. 4. Squared end-to-end distance, as a function of elapsed number of time steps (abscissa- 
note scale difference between upper and lower graphs). Upper solid curve: normal dynamics run; 
lower solid curve: initial portion of mass tensor run, immediately after calculation of mass tensor; 
lower dashed curve: end of mass tensor run, beginning 5430 time steps after calculation of mass 
tensor. 

of mass tensor dynamics as in 1000 steps of ordinary dynamics. Although the 
chain did not undergo a major conformational change (i.e., it remained a left- 
handed helix throughout even the 6000~step mass tensor run), it appears likely 
that major as well as minor confirmational changes would occur much sooner 
under mass tensor than under ordinary dynamics. The persistence of fairly rapid 
fluctuations at the end of the mass tensor run (dashed curve) shows that the local 
curvature information gathered at the beginning of the run did not rapidly become 
obsolete. 
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FIG. 5. Diffusion parameter S,, as a function of elapsed number of time steps n (note scale 

difference between upper and lower abscissa). Upper graph: average over three time origins in 

normal dynamics run; lower graph: average over five time origins in mass tensor run. Bars show 

typical standard errors of the plotted means. 

The increase of S, with IZ measures the system’s diffusion away from its original 
configuration. As Fig. 5 shows, this also occurred about ten times more rapidly 
under mass tensor dynamics than under ordinary dynamics. In both the runs, 
S, leveled off at about 2a* at long times, which indicated that the system was 
trapped in a relatively small region in configuration space corresponding to the 
left handed helical conformation. The rms length of a single dynamical step in 
configuration space, (S1)1/2, was about 0.010 under ordinary dynamics and about 
0.050 under mass tensor dynamics. 

All these results indicate that the mass tensor method accomplishes about ten 
times as much configurational change per time step as ordinary dynamics, or 
about five times as much per second of computer time. A more dramatic improve- 
ment could be expected in a system having a greater disparity between its hard 
and soft modes. 

The failure of the lo-atom chain to undergo a major conformational transition, 
even with the assistance of mass tensor dynamics, emphasizes the distinction 
between events that are infrequent primarily because they involve soft, slowly 
relaxing degrees of freedom and events whose infrequency results primarily from 
the presence of a large activation barrier. Events of the latter type need not be 
associated with any particularly soft modes of the force constant matrix, and may 
remain quite infrequent under mass tensor dynamics. Such events are probably 
best studied by molecular dynamics and Monte Carlo methods [914 in which an 

p Section II-4 and Appendix B of [9] discuss the application of saddle point methods to vacancy 
jumps in a crystal. 
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artificial constraint force is used to push the system into the relevant saddle point 
neighborhood in configuration space (unfortunately these methods can only be 
used when the approximate saddle point is known). Chirality reversal of the lO- 
atom chain is probably an infrequent event of intermediate type. On the one 
hand it probably involves degrees of freedom which relax about as slowly as 
the end-to-end distance. On the other hand, there is a sizable activation barrier 
because of the need to simultaneously disrupt most of the Lennard-Jones bonds 
available in the helical conformations, in order to get from one to the other. 

IV. NONCONSTANT MASS TENSORS 

This section generalizes the mass tensor by allowing it to be a function of the 
coordinates q = (ql ... qN), rather than a constant matrix as has been assumed 
up to now. Thereafter, some attention will be given to the problem of whether 
a nonconstant mass tensor must be “memoryless” (i.e., be a function of the present 
configuration only) to sample configuration space correctly. 

One reason for allowing the mass tensor to be a function of q is to enable the 
mass tensor method to be extended to systems (such as a system of rigid-body 
molecules described by center-of-mass Cartesian coordinates and Euler angles) 
whose kinetic energy is inherently a function of both q and 4. Even the ordinary 
dynamics of such a system requires a Hamiltonian of the form 

or in terms of the conjugate momenta p = M(q) * 4, 

To be sure, most off-diagonal terms in the kinetic energy will be identically zero; 
but nonzero, configuration-dependent terms will arise, e.g., when i and j represent 
two Euler angles of the same molecule. The accelerations & do not in general 
obey simple Newton’s equations (Eq. (4)), but the motion of the system can be 
computed by solving Hamilton’s equations for ilc and Pk : 

Pk = ~Pj”i.f(Q)v 
i 

or, in the special case of rigid-body molecules, coupled Newton-Euler equations [8]. 
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In applying the mass tensor method to a system whose ordinary dynamics is 
described by the Hamiltonian of Eq. (15), we wish to know to what extent the 
mass tensor may be modified without affecting the system’s equilibrium properties, 
i.e., without affecting the equilibrium microcanonical probability density, p(q), 
in configuration space. If the system’s total energy is E, this density can be obtained 
by integrating the phase space density, 6[H(q, p) - E], over all the momenta. 

= const j M(q)11j2 * [E - U(q)](N--2)i2. (17) 

It can be seen that p(q) depends on the mass tensor only through the determinant 
1 M(q)l. Correct sampling of configuration space will therefore be preserved by 
any modification of M(q) which leaves I M(q)/ the same function of the coordinates 
q as it was in the original system. 

As an example of such a modification, consider again a system of rigid-body 
molecules. The ordinary dynamics of this system involves a mass tensor of the 
form 

where I is a constant diagonal matrix of principal inertia moments and molecule 
masses, and T(q) is an Euler-angle-dependent, nonorthogonal transformation 
matrix from time derivatives of the Euler angles to angular velocities about the 
molecules’ principal axes. Correct sampling of configuration space would be 
preserved if I were replaced by an arbitrary positive-definite, constant, symmetric 
matrix I’ (more generally, I’ could be a function of q, so long as its determinant 
was not). A suitable I’ for slowing down fast motions and speeding up slow ones 
could be obtained from the instantaneous or time-averaged matrix of second 
derivatives of U with respect to infinitesimal rotations (about the molecules’ 
principal axes) and translations. 

A rather different reason for considering a variable mass tensor, even for systems 
whose ordinary dynamics is described by a constant, diagonal mass, is to avoid 
the obsolescence of the mass tensor which inevitably results when a system with a 
tied mass tensor moves out of that part of contiguration space in which the mass 
tensor was calculated. The obvious solution to this problem-i.e., to periodically 
update or recalculate the mass tensor on the basis of current force constant informa- 
tion -while it might work well in practice, would introduce a subtle time-depend- 
ence into the Hamiltonian, and thus in principle might lead to statistically 
incorrect sampling of configuration space, This difficulty could be resolved by 
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using a mass tensor which was an appropriately chosen function of the present 
configuration only, but not of time or of past configurations. Further numerical 
and theoretical work is needed to determine whether such a “memoryless” mass 
tensor (which would probably be more costly to use per time step than a periodically 
updated one) is indeed necessary to sample configuration space correctly; and if 
not, what updating scheme is best. It should perhaps be noted that most efficient 
methods of function minimization [l, 21 do have memory; they make use of 
curvature information gathered during previous iterations. 

If a memoryless definition for the mass tensor turns out to be necessary, it 
would probably be best to make the mass tensor a simply calculable, piecewise- 
constant function of q, defined on a rather coarse mesh of cells in configuration 
space. The trajectory could then be computed by Newton’s equations except 
during its rather infrequent encounters with cell boundaries. 

ACKNOWLEDGMENTS 

I thank Aneesur Rahman for helpful discussions of the significance of the instantaneous force 
constant matrix, Scott Kirkpatrick and Ralph Willoughby for advice on sparse matrix tech- 
niques, and Philip Wolfe for discussions of function minimization methods. 

REFERENCES 

1. R. FLETCHER AND M. J. D. POWELL, Comput. J. 6 (1963), 163. 
2. S. L. S. JACOBY, J. S. KOWALIK, AND J. T. Przzo, “Iterative Methods for Nonlinear Optimiza- 

tion Problems,” Chap. 5, Prentice-Hall, Englewood Cliffs, N.J., 1972. 
3. ANEEXJR RAHMAN, private communication. 
4. J. K. REID (Ed.), “Large Sparse Sets of Linear Equations,” Proceedings Oxford Conference, 

Academic Press, London, 1970. 
5. D. J. ROSE AND R. A. WILLOUGHBY (Eds.), “Sparse Matrices and their Applications,” 1971 

Symposium Proc. IBM Watson Research Center, Yorktown Heights N.Y., Plenum Press, 
New York, 1972. 

6. ALAN GEORGE, SIAM J. Nttmer. Anal. 10 (1973), 345. 
7. C. W. GEAR, Argonne National Laboratory Report No. ANL-7126, 1966. 
8. A. RAHMAN AND F. H. STILLINGER, J. Chem. Phys. 55 (1971), 3336. 
9. C. H. BENNETT, in “Diffusion in Solids: Recent Developments,” (J. J. Burton and A. S. Nowick, 

Eds.), Academic Press, New York, 1975. 


